最近一个项目用到了图像识别,之前从未接触过OpenCV,经过各种找教程,终于是搞懂了一些。 整个具体流程大概是获取图像-->图像二值化,灰度图(cvtColor)-->图像降噪(GaussianBlur)->轮廓识别(cvFindContours)-->形状判断。 大多数教程很专业,各种参数分析看不懂,经过各种搜索终于是搞懂了。 识别圆 在识别圆方面,OpenCV有内置的方法:霍夫圆变化: HoughCircles(edges, circles, CV_HOUGH_GRADIENT, 1.5, 10, 200, 100, 0, 0);
参数分析: edges:灰度图像 circles:std::vector circles;数组,用来存储圆的坐标信息 CV_HOUGH_GRADIENT:Hough 变换方式,目前只支持CV_HOUGH_GRADIENT, which is basically 21HT, described in [Yuen03].默认用这个 1.5:累加器图像的分辨率,1的时候是与获取到的图像相同,1.5就是1.5倍 10:圆与圆的最小距离,两个圆心距离如果在范围内则被认定为1个圆 200:100-200两个参数选就够了 100:默认100,数值越低识别圆越不精确(圆的数量识别变多可能有个弧线就被识别是圆) 最后两个参数分别是识别 圆的最小,最大的面积。
矩形识别 矩形识别并没有内置方法,需要自己手写。 最主要的方法是二值化。通过二值化来调节识别的强度。 cvThreshold(tgray, gray, 75, 250, CV_THRESH_BINARY);
参数分析: src:原始 数组(单通道 , 8-bit of 32-bit 浮点数)。 dst:输出数组,必须与 src 的类型一致,或者为 8-bit。 threshold:阈值 max_value:使用 CV_THRESH_BINARY 和 CV_THRESH_BINARY_INV 的最大值。 threshold_type:阈值类型 threshold_type=CV_THRESH_BINARY:如果 src(x,y)>threshold ,dst(x,y) = max_value; 否则,dst(x,y)=0; threshold_type=CV_THRESH_BINARY_INV:如果 src(x,y)>threshold,dst(x,y) = 0; 否则,dst(x,y) = max_value. threshold_type=CV_THRESH_TRUNC:如果 src(x,y)>threshold,dst(x,y) = max_value; 否则dst(x,y) = src(x,y). threshold_type=CV_THRESH_TOZERO:如果src(x,y)>threshold,dst(x,y) = src(x,y) ; 否则 dst(x,y) = 0。 threshold_type=CV_THRESH_TOZERO_INV:如果 src(x,y)>threshold,dst(x,y) = 0 ; 否则dst(x,y) = src(x,y). 效果图如下: 在矩形识别里面的二值化图: 圆识别: 源码: #include
#include
#include
#include
#include
#include
#include
#include
#include
#pragma comment(lib,"ws2_32.lib")
#include
using namespace cv;
//
//函数功能:用向量来做COSα=两向量之积/两向量模的乘积求两条线段夹角
//输入: 线段3个点坐标pt1,pt2,pt0,最后一个参数为公共点
//输出: 线段夹角,单位为角度
//
double angle(CvPoint* pt1, CvPoint* pt2, CvPoint* pt0)
{
double dx1 = pt1->x - pt0->x;
double dy1 = pt1->y - pt0->y;
double dx2 = pt2->x - pt0->x;
double dy2 = pt2->y - pt0->y;
double angle_line = (dx1*dx2 + dy1 * dy2) / sqrt((dx1*dx1 + dy1 * dy1)*(dx2*dx2 + dy2 * dy2) + 1e-10);//余弦值
return acos(angle_line) * 180 / 3.141592653;
}
//
//函数功能:采用多边形检测,通过约束条件寻找矩形
//输入: img 原图像
// storage 存储
// minarea,maxarea 检测矩形的最小/最大面积
// minangle,maxangle 检测矩形边夹角范围,单位为角度
//输出: 矩形序列
//
CvSeq* findSquares4(IplImage* img, CvMemStorage* storage, int minarea, int maxarea, int minangle, int maxangle, int(&temp)[30])
{
CvSeq* contours;//边缘
int N = 6; //阈值分级
CvSize sz = cvSize(img->width & -2, img->height & -2);
IplImage* timg = cvCloneImage(img);//拷贝一次img
IplImage* gray = cvCreateImage(sz, 8, 1); //img灰度图
IplImage* pyr = cvCreateImage(cvSize(sz.width / 2, sz.height / 2), 8, 3); //金字塔滤波3通道图像中间变量
IplImage* tgray = cvCreateImage(sz, 8, 1); ;
CvSeq* result;
double s, t;
int sk = 0;
CvSeq* squares = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvPoint), storage);
cvSetImageROI(timg, cvRect(0, 0, sz.width, sz.height));
//金字塔滤波
cvPyrDown(timg, pyr, 7);
cvPyrUp(pyr, timg, 7);
//在3个通道中寻找矩形
for (int c = 0; c < 3;="" c++)="" 对3个通道分别进行处理="" {="" cvsetimagecoi(timg,="" c="" +="" 1);="" cvcopy(timg,="" tgray,="" 0);="" 依次将bgr通道送入tgray="" for="" (int="" l="0;" l="">< n;="" l++)="" {="" 不同阈值下二值化="" cvthreshold(tgray,="" gray,="" 75,="" 250,="" cv_thresh_binary);="" cvshowimage("111",="" gray);="" cvfindcontours(gray,="" storage,="" &contours,="" sizeof(cvcontour),="" cv_retr_list,="" cv_chain_approx_simple,="" cvpoint(0,="" 0));="" while="" (contours)="" {="" 多边形逼近="" result="cvApproxPoly(contours," sizeof(cvcontour),="" storage,="" cv_poly_approx_dp,="" cvcontourperimeter(contours)*0.02,="" 0);="" 如果是凸四边形并且面积在范围内="" if="" (result-="">total == 4 && fabs(cvContourArea(result, CV_WHOLE_SEQ)) > minarea && fabs(cvContourArea(result, CV_WHOLE_SEQ)) < maxarea="" &&="" cvcheckcontourconvexity(result))="" {="" s="0;" 判断每一条边="" for="" (int="" i="0;" i="">< 5;="" i++)="" {="" if="" (i="">= 2)
{ //角度
t = fabs(angle((CvPoint*)cvGetSeqElem(result, i), (CvPoint*)cvGetSeqElem(result, i - 2), (CvPoint*)cvGetSeqElem(result, i - 1)));
s = s > t ? s : t;
}
}
//这里的S为直角判定条件 单位为角度
if (s > minangle && s < maxangle)="" {="" for="" (int="" i="0;" i="">< 4;="" i++)="" cvseqpush(squares,="" (cvpoint*)cvgetseqelem(result,="" i));="" cvrect="" rect="cvBoundingRect(contours," 1);="" 获取矩形边界框="" cvpoint="" p1;="" p1="cvPoint(rect.x" +="" rect.width="" 2,="" rect.y="" +="" rect.height="" 2);="" 矩形中心坐标="" std::cout="">< "x:"="">< p1.x="">< "y:"="">< p1.y="">< std::endl;="" }="" }="" contours="contours-">h_next;
}
}
std::cout <>< std::endl;="" temp[26]="sk;" sk="0;" }="" cvreleaseimage(&gray);="" cvreleaseimage(&pyr);="" cvreleaseimage(&tgray);="" cvreleaseimage(&timg);="" return="" squares;="" }="" 函数功能:画出所有矩形="" 输入:="" img="" 原图像="" squares="" 矩形序列="" wndname="" 窗口名称="" 输出:="" 图像中标记矩形="" void="" drawsquares(iplimage*="" img,="" cvseq*="" squares,="" const="" char*="" wndname)="" {="" cvseqreader="" reader;="" iplimage*="" cpy="cvCloneImage(img);" cvpoint="" pt[4];="" int="" i;="" cvstartreadseq(squares,="" &reader,="" 0);="" for="" (i="0;" i="">< squares-="">total; i += 4)
{
CvPoint* rect = pt;
int count = 4;
memcpy(pt, reader.ptr, squares->elem_size);
CV_NEXT_SEQ_ELEM(squares->elem_size, reader);
memcpy(pt + 1, reader.ptr, squares->elem_size);
CV_NEXT_SEQ_ELEM(squares->elem_size, reader);
memcpy(pt + 2, reader.ptr, squares->elem_size);
CV_NEXT_SEQ_ELEM(squares->elem_size, reader);
memcpy(pt + 3, reader.ptr, squares->elem_size);
CV_NEXT_SEQ_ELEM(squares->elem_size, reader);
//cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
cvPolyLine(cpy, &rect, &count, 1, 1, CV_RGB(rand() & 255, rand() & 255, rand() & 255), 1, CV_AA, 0);//彩色绘制
}
cvShowImage("22", cpy);
cvReleaseImage(&cpy);
}
void SendMessageOne()
{
//开起摄像头
VideoCapture capture;
capture.open(0);
Mat edges; //定义转化的灰度图
if (!capture.isOpened())
namedWindow("【效果图】", CV_WINDOW_NORMAL);
const char* winn = "1111";
if (!capture.isOpened())
//namedWindow(winn, CV_WINDOW_NORMAL);
CvMemStorage* storage = 0;
CvMemStorage* storage = 0;
storage = cvCreateMemStorage(0);
while (1)
{
int Y=0, J=0;
Mat frame;
capture >> frame;
IplImage img0 = frame;
//drawSquares(&img0, findSquares4(&img0, storage, 100, 2000, 80, 100, a), winn);
//cvClearMemStorage(storage); //清空存储
Mat E = frame(Range(1, 320), Range(1, 240));
cvtColor(frame, edges, CV_BGR2GRAY);
//高斯滤波
GaussianBlur(edges, edges, Size(7, 7), 2, 2);
std::vector circles;//存储每个圆的位置信息
//霍夫圆
HoughCircles(edges, circles, CV_HOUGH_GRADIENT, 1.5, 10, 100, 100, 0, 50);
for (size_t i = 0; i < circles.size();="" i++)="" {="" point="" center(cvround(circles[i][0]),="" cvround(circles[i][1]));="" int="" radius="cvRound(circles[i][2]);" std::cout="">< "圆的x是"="">< circles[i][0]="">< "圆的y是"="">< circles[i][1]="">< std::="" endl;="" 绘制圆轮廓="" circle(frame,="" center,="" radius,="" scalar(155,="" 50,="" 255),="" 3,="" 8,="" 0);="" int="" r="">(cvRound(circles[i][1]), cvRound(circles[i][0]))[2];//R
int G = frame.at(cvRound(circles[i][1]), cvRound(circles[i][0]))[1];//G
int B = frame.at(cvRound(circles[i][1]), cvRound(circles[i][0]))[0];//B
int num = R + G + B;
std::cout < "圆心颜色是"="">< num="">< std::endl;="" }="" imshow("【效果图】",="" frame);="" waitkey(30);="" }="" }="" int="" main()="" {="" std::thread="" *a="new" std::thread(sendmessageone);="" a-="">join();
return 0;
}
参考文档:
(责任编辑:admin) |